Publications
Fraser K, Haight J, Gardner E, & Flagel SB. (2016). Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors. Behavioral Brain Research, 305:87-99. https://doi.org/10.1016/j.bbr.2016.02.022
Elucidating the neurobiological mechanisms underlying individual differences in the extent to which reward cues acquire the ability to act as incentive stimuli may contribute to the development of successful treatments for addiction and related disorders. We used the sign-tracker/goal-tracker animal model to examine the role of dopamine D2 and D3 receptors in the propensity to attribute incentive salience to reward cues. Following Pavlovian training, wherein a discrete lever-cue was paired with food reward, rats were classified as sign- or goal-trackers based on the resultant conditioned response. We examined the effects of D2/D3 agonists, 7-OH-DPAT (0.01–0.32 mg/kg) or pramipexole (0.032–0.32 mg/kg), the D2/D3 antagonist raclopride (0.1 mg/kg), and the selective D3 antagonist, SB-277011A (6 or 24 mg/kg), on the expression of sign- and goal-tracking conditioned responses. The lever-cue acquired predictive value and elicited a conditioned response for sign- and goal-trackers, but only for sign-trackers did it also acquire incentive value. Following administration of either 7-OH-DPAT, pramipexole, or raclopride, the performance of the previously acquired conditioned response was attenuated for both sign- and goal-trackers. For sign-trackers, the D2/D3 agonist, 7-OH-DPAT, also attenuated the conditioned reinforcing properties of the lever-cue. The selective D3 antagonist did not affect either conditioned response. Alterations in D2/D3 receptor signaling, but not D3 signaling alone, transiently attenuate a previously acquired Pavlovian conditioned response, regardless of whether the response is a result of incentive motivational processes. These findings suggest activity at the dopamine D2 receptor is critical for a reward cue to maintain either its incentive or predictive qualities.
Flagel SB, Chaudhury S, Waselus M, Kelly R, Thompson RT, Watson SJ, & Akil H. (2016). Genetic background and epigenetic modifications in the core of the nucleus accumbens predict addiction-like behavior in a rat model. Proceedings of the National Academy of Sciences, 113(20). https://doi.org/10.1073/pnas.1520491113
This study provides a demonstration in the rat of a clear genetic difference in the propensity for addiction-related behaviors following prolonged cocaine self-administration. It relies on the use of selectively bred high-responder (bHR) and low-responder (bLR) rat lines that differ in several characteristics associated with “temperament,” including novelty-induced locomotion and impulsivity. We show that bHR rats exhibit behaviors reminiscent of human addiction, including persistent cocaine-seeking and increased reinstatement of cocaine seeking. To uncover potential underlying mechanisms of this differential vulnerability, we focused on the core of the nucleus accumbens and examined expression and epigenetic regulation of two transcripts previously implicated in bHR/bLR differences: fibroblast growth factor (FGF2) and the dopamine D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA levels and increased association of a repressive mark on histones (H3K9me3) at the FGF2 promoter. These differences were apparent under basal conditions and persisted even following prolonged cocaine self-administration. In contrast, bHRs had lower D2 mRNA under basal conditions, with greater association of H3K9me3 at the D2 promoter and these differences were no longer apparent following prolonged cocaine self-administration. Correlational analyses indicate that the association of H3K9me3 at D2 may be a critical substrate underlying the propensity to relapse. These findings suggest that low D2 mRNA levels in the nucleus accumbens core, likely mediated via epigenetic modifications, may render individuals more susceptible to cocaine addiction. In contrast, low FGF2 levels, which appear immutable even following prolonged cocaine exposure, may serve as a protective factor.
Morrow JD & Flagel SB. (2016). Neuroscience of resiliency and vulnerability for addiction medicine: From genes to behavior. Progress in Brain Research, 223:3-18. https://doi.org/10.1016/bs.pbr.2015.09.004
Addiction is a complex behavioral disorder arising from roughly equal contributions of genetic and environmental factors. Behavioral traits such as novelty-seeking, impulsivity, and cue-reactivity have been associated with vulnerability to addiction. These traits, at least in part, arise from individual variation in functional neural systems, such as increased striatal dopaminergic activity and decreased prefrontal cortical control over subcortical emotional and motivational responses. With a few exceptions, genetic studies have largely failed to consistently identify specific alleles that affect addiction liability. This may be due to the multifactorial nature of addiction, with different genes becoming more significant in certain environments or in certain subsets of the population. Epigenetic mechanisms may also be an important source of risk. Adolescence is a particularly critical time period in the development of addiction, and environmental factors at this stage of life can have a large influence on whether inherited risk factors are actually translated into addictive behaviors. Knowledge of how individual differences affect addiction liability at the level of genes, neural systems, behavioral traits, and sociodevelopmental trajectories can help to inform and improve clinical practice.